UV REFLECTANCE PATTERNS IN THE FLOWERS OF AUSTRALIAN NATIVE PLANTS

FINAL REPORT OF A PROJECT FUNDED BY THE AUSTRALIAN FLORA FOUNDATION

Dr B.R. Randell, Department of Botany, University of Adelaide

The project was carried out during the spring and summer of 1988, in the Mt Lofty Ranges near Adelaide. The first part of the project involved perfecting a technique to record the UV-reflectance patterns. This was done successfully, and the technique was described in a paper published in the Newsletter of the Australian Systematic Botany Society; viz:Randell B.R. and B.C. Rowland (1989), A method for recording UV-reflectance patterns in flowers. *Aust. Syst. Bot. Soc. Newsl.* 59: 2-4

Using this technique, some 50 species of native plants, belonging to 37 genera, were surveyed. Fourteen genera contained species which showed UV reflectance in their flowers, 23 did not (Table). One genus contained species with and without reflectance [Cassia], and one family showed genera with and without reflectance abilities [Goodeniaceae].

In the *Labiateae*, a unique pattern of reflectance was evident. Petals of *Prostanthera* and *Westringia* were non-reflective, but spots and hairs within the throats of the flowers were reflective, so the flowers had, in effect, a bright spot near the reproductive organs.

All seven of the surveyed genera of the *Papilionaceae* showed evidence of UV reflectance, usually by having highly-reflective petals, with a non-reflective dark spot on the standard petal, near the reproductive organs. This corresponded closely with the dark spot on the petals visible to the naked eye. One species, *Phyllota pleurandroides*, did not have this visible dark spot on the standard. Nevertheless, it had a standard petal that was highly UV-reflective with a non-reflective dark spot at the base.

In the Goodeniaceae, fresh flowers of several species of *Goodenia* had highly-reflective petals, with a dark spot near the reproductive organs, while *Dampieria rosmarinifolia* was not reflective. Two species of *Scaevola* did not have reflective petals, but *Scaevola crassifolia* had petals which were slightly reflective. I also determined that flowers of dried herbarium specimens of *Goodenia geniculata* and *Velleia paradoxa* had highly-reflective petals and a conspicuous dark spot.

Within the Caesalpiniaceae, *Senna charlesiana* had reflective petals and a conspicuous dark centre, as did the introduced *Cassia fistula*. However, the native *Cassia brewsteri* had non-reflective petals.

The study revealed that UV-reflectance patterns may be common in Australian wildflowers.

The funds provided by the Australian Flora Foundation were used to purchase two camera bodies, one macro lens [105mm], and a lens filter which blocks visible light but permits the passage of UV light. Other expenses were for travel [minor cost, as all photography was done within 50 km of Adelaide], and the purchase of films, and development and printing of the photographs.

Table. Names of species photographed, and whether or not their flowers show the presence of UV reflectance patterns.

Showing UV reflectance patterns	NOT showing UV reflectance patterns
Daviesia ulicina	Hymenosporum flavum
Hardenbergia comptoniana	Billardieria cymosa
Dillwinia hispida	Comesperma patens
Pultenaea largiflorens	Grevillea lavandulacea
Indigophers sp.	Beckaea sp.
Platylobium obtusangulum	Melaleuca sp.
Goodenia ovata	Callistemon sp.
Goodenia blackiana	Calothamnus sp.
Goodenia geniculata	Chamaeleucium sp.
Vellaea paradoxa	Leptospermum sp.
Phyllota pleurandroides	Calythrix sp.
Stylidium graminifolium	Scaevola microcarpa
Prostanthera behriana	Scaevola calendula
Westringia [cultivar]	Scaevola spinescens
Senna charlesiana	Dampieria rosmarinifolia [herbarium
Cassia fistula	specimen]
	Ptilotus obovatus
Showing SLIGHT UV reflectance	Brachyscome multifida
patterns	Helichrysum cunifolium
Adenanthos terminalis	Helichrysum scorpoides
Scaevola crassifolia	Helichrysum baxteri
Thomasia petalocalyx	Helipterum demissum
Tetratheca pilosa	Wahlenbergia stricta
	Cassia Brewsteri
	Stackhousia monogyna
	Astroloma conostephoides
	Boronia filifolia
	Zieria veronicea
	Pimelia glauca
	Pimelia ferruginea
	Pimelia octophylla